
  

 

   

  

 

 

 

 

CHAPTER 4: 

FOOD SYSTEMS 
Kevin Karl, Lily-belle Sweet, 

Cameron Kruse, Matteo 
Turchetta, Sarah Garland,  

Elena Mendez Leal, Ranveer 
Chandra and Alex C. Ruane 

  



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 4: Food Systems - 4-1 

  

 

CHAPTER 4:  

FOOD SYSTEMS 
Kevin Karl, Lily-belle Sweet, Cameron Kruse, Matteo Turchetta, Sarah Garland,  
Elena Mendez Leal, Ranveer Chandra and Alex C. Ruane 

 

 

A. Food Systems and Climate Change Overview ................................................................................ 4-2 

B. Examples of AI Applications in Food Systems and Climate Change .............................................. 4-4 

C. Barriers ........................................................................................................................................... 4-11 

D. Risks ................................................................................................................................................ 4-13 

E. Recommendations ......................................................................................................................... 4-15 

F. References ...................................................................................................................................... 4-17 

 

  



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 4: Food Systems - 4-2 

  

 

A. Food Systems and Climate Change Overview 

Food systems—encompassing activities in agricultural production, land use change, supply chain 

activities and waste management—are critical to sustaining livelihoods and delivering nutrition 

worldwide (Figure 4-1). Food systems also contribute significantly to climate change. Recent 

estimates suggest that food systems produce about 30% of annual anthropogenic greenhouse gas 

(GHG) emissions: over 20% of carbon dioxide, 50% of methane and 75% of nitrous oxide.1 Climate 

change, in turn, has a significant and growing impact on food systems. For example, climate change is 

poised to increase heat stress for crops and livestock, accelerate soil moisture loss and reduce the 

nutritional content of food.2,3 The increasing frequency and duration of climate extremes, such as 

severe droughts and extreme rain events, endanger global food and nutrition security.  

 

Figure 4-1. An integrated overview of food systems. Food systems comprise a wide variety of inter-related activities, 

from the production of agricultural inputs (pre-production), food-related land use change, agricultural production 

and fisheries, post-farm-gate supply chains, consumption activities, and waste disposal. Adapted from Rosenzweig 

et al. (2020).4 

A grand challenge lies in transforming food systems to be more sustainable, resilient and equitable, 

while increasing food security for a growing population in the face of climate change. Artificial 

intelligence (AI) technologies and processes offer significant potential to address this challenge by 

enabling more efficient, data-driven decision-making across food system activities. Recent 

advancements in AI, such as deep learning, computer vision, and natural language processing, 

combined with the increasing availability of large-scale agriculture and land use data, have created a 

unique opportunity to harness AI for transforming food systems.5 
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However, AI applications carry significant risks if models are developed and used without 

considerable caution. For example, an AI model trained to achieve a specific target (such as 

improving near-term agricultural yields) could produce results that ignore other objectives (e.g., 

social, nutritional, economic, cultural, environmental or ethical goals). The result could be suboptimal 

or even harmful outcomes.  

Close collaboration between AI researchers, food system experts, farmers, policymakers and the 

private sector is necessary to ensure that AI solutions are aligned with broader goals in sustainability 

and justice. An ideal AI information ecosystem would feature coordination across various nodes of 

information transfer, supported by a series of guardrails and accelerators that ensure AI models are 

adaptive to changing conditions, inclusive of diverse and representative perspectives, and embedded 

in appropriate context (Figure 4-2). 

 

Figure 4-2. A coordinated, adaptive and inclusive AI information ecosystem for food systems. A responsible and 

effective AI information chain is supported by AI acceleration processes (green) as well as process that establish AI 

guardrails (pink). Blue boxes represent examples of specific food systems applications or processes highlighted in this 

chapter. Red boxes represent where different groups of people fit into the picture as nodes of information synthesis 

and transfer.  

This chapter will describe example AI applications at the nexus of climate change and food systems, 

explore key components of an effective and responsible AI information chain, and conclude with 

recommendations for governments, businesses, scientists, international organizations, and civil 

society to ensure the appropriate use of this promising suite of technologies.  
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B. Examples of AI Applications in Food Systems and Climate Change 

i. Overview 

AI applications in food systems run the gamut from establishing early warning systems for pest and 

disease pressure on crops, optimizing energy use during food transportation and storage, and 

enhancing soil carbon sequestration efforts, among other transformational application areas.6-8 AI 

tools are also used to rapidly develop novel alternative protein products with much lower carbon 

footprints than many animal-sourced foods, which are a key source of emissions from food 

systems.9-13 AI-enhanced supply chain monitoring and solid waste management practices—such as 

improved resource recovery through computer vision—can greatly improve circularity in food 

systems and significantly reduce emissions from food waste in landfills (which contributes roughly 8% 

of global anthropogenic methane emissions).14,15 Recent studies show that large language models, 

like GPT-4, perform well on agricultural exams and questions, sometimes outperforming humans.16 

AI models demonstrate potential in supporting agricultural education, assessment, and management 

decisions, offering new tools to assist farmers and agricultural professionals as they navigate novel 

challenges posed by climate change. There are myriad examples of promising use cases for AI to 

enhance food systems decision-making, reduce emissions, and enhance climate resilience. This 

chapter will focus on just a few. 

ii. Remote sensing 

Remote sensing involves synthesizing and analyzing satellite, drone and/or ground-based imagery to 

facilitate a wide array of food systems decisions.17 Use cases span a variety of spatial scales—from 

field level monitoring of crop health, soil conditions, and land use change to regional monitoring of 

agricultural conditions to provide early warning for international trade markets.18,19 There are 

currently roughly 50–100 remote sensing specific foundation models, each with unique architectures 

and strengths.20 In Table 4-1, we break these use cases into three broad categories: object 

recognition, land use identification and temporal monitoring. 

Table 4-1. AI-Enhanced Remote Sensing Applications for Mitigation and Adaptation in Food Systems 

CATEGORY     USE CASE     VALUE 

Object 
recognition 

• Identifying concentrated 
animal feeding operations 
(CAFOs) and landfills 

• Estimating and 
anticipating crop yields 
using satellite imagery 

• To better monitor and account for methane 
emissions from point sources (including from 
food waste in landfills) for improved decision-
making in climate mitigation 

• To improve adaptation planning by accurately 
assessing crop production levels in historical 
conditions and improving satellite-based 
seasonal projections 
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CATEGORY     USE CASE     VALUE 

Land use 
Identification 

• Monitoring soil erosion 
and land degradation 

• Identifying the use of 
climate-smart agricultural 
practices 

• To advance soil carbon sequestration potential 
and land suitability assessments (e.g., to support 
sustainable intensification and reduce land 
conversion pressure) 

• To monitor the prevalence of climate-smart 
practices, such as cover cropping, reduced tillage 
and no-till systems; can also be used to monitor 
and encourage the climate impact of agricultural 
land use through the albedo effect 

Temporal 
monitoring 

• Monitoring coastal 
erosion affecting 
agricultural lands 

• Tracking changes in water 
bodies affecting irrigation 
systems 

• Monitoring heat and 
water stress on crop and 
grassland productivity 

• Tracking the spread of 
plant diseases and pests 
over seasons 

• To facilitate adaptive coastal management 
strategies that protect agricultural areas from the 
impacts of coastal erosion 

• To optimize irrigation management and water 
allocation by monitoring changes in water 
availability and distribution 

• To develop early warning systems for timely food 
security interventions 

• To facilitate early detection and control measures 
to mitigate the spread of diseases and pests, thus 
minimizing crop losses 

 

As the success of OpenAI's ChatGPT demonstrated, applications that connect users with AI models 

are just as important as the models themselves. Figure 4-3 illustrates a tool called Earth Index, a 

product designed to connect users to geospatial AI models to increase accessibility for earth 

monitoring. The tool transforms satellite imagery into machine learning (ML) embeddings and makes 

them interactable by allowing users to select features of interest. Based on the embeddings, the 

model predicts where similar features would be located. After a few labeling iterations, the model 

can accurately predict new features that match. Earth Index has been used to identify illegal gold 

mining in the Amazon, find unregistered concentrated animal feeding operations (CAFOs), quantify 

plastic in landfills and much more. 

 

 

 

 



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 4: Food Systems - 4-6 

  

 

 

Remote sensing benefits from large-scale, non-invasive monitoring of agricultural land use with high 

spatiotemporal and spectral resolution. Data are frequently updated, with near-global coverage, and 

can be integrated with physical models to enhance decision-making capabilities. However, challenges 

in gathering ground-truth data to validate analyses, combined with difficulties in obtaining 

consistent, high-quality imagery (e.g., due to cloud cover), can significantly reduce the robustness of 

decisions based solely on remotely sensed data.21 The relatively short historical record also limits 

long-term climate change impact analysis. These factors necessitate careful consideration in 

implementing AI for remote sensing in food systems, such as developing human-in-the-loop 

processes as a guardrail. 

iii. Agricultural simulations 

Agricultural simulations, such as process-based climate-crop models, can project crop growth, yield, 

runoff and emissions under various genetic, environmental and management regimes. Process-based 

models form these projections by simulating biophysical processes in both current and future climate 

scenarios.22 These models have been used to optimize yields, improve grain quality, reduce the 

environmental impacts of farming and increase profitability.23 However, crop growth is influenced by 

complex interactions across myriad biophysical factors, and many of these compound effects are not 

yet well-understood, nor are they fully represented in process-based models.24,25 

 

AI Guardrail  

HUMAN-IN-THE-LOOP MODEL AND TOOL 
IMPROVEMENT 
Developing effective human-in-the-loop model-user interfaces is crucial for adopting and using 

AI tools in food systems applications, especially given the diverse backgrounds, expertise levels 

and information needs of end-users in this domain. These interfaces should be intuitive, user-

friendly and adaptable, providing clear and actionable insights while allowing users to explore 

and interrogate the underlying data and assumptions behind AI model outputs. Moreover, 

these interfaces should incorporate mechanisms for user feedback and input. Such features 

would enable users to validate, refine and improve AI model performance over time by 

flagging inaccurate or irrelevant outputs, suggesting new data sources or features, and sharing 

their domain expertise and local knowledge. By actively engaging users in the iterative process 

of model improvement, human-in-the-loop interfaces can build trust, transparency and 

accountability in AI tools. This process would also ensure that such tools are tailored to the 

specific contexts and needs of end users. 
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ML models have emerged with new capabilities to predict global and regional crop yields based on 

climate conditions, satellite vegetation indices and other drivers.26-28 These forecasts can be used to 

estimate regional or national crop production, assess potential supply chain disruptions, quantify 

high-resolution soil organic carbon changes, and guide allocation of resources to support farmers in 

adapting to changing climate conditions.29 ML methods can also benefit from pre-training on 

available data from other crops and regimes or even on synthetic data from process-based models 

when dealing with data-limited crops or regions.30-32 Recent research has experimented with novel 

ways to combine traditional process-based models with powerful ML models, resulting in hybrid 

models that are more likely than standalone ML models to produce plausible predictions when 

exposed to situations outside of the training set.29,33,34 The Agricultural Model Intercomparison and 

Improvement Project (AgMIP) Machine Learning Activity (AgML) is coordinating efforts to build a 

collaborative community, including developing approaches that make the best combined use of 

process-based and data-driven models for agricultural impacts and adaptation analysis.

 

Figure 4-3. Efficient human-in-the-loop learning for AI-enhanced remote sensing analysis. This schematic illustrates 

how Earth Index connects users to interactive geospatial AI models. 
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Precision Agriculture 

OPTIMIZING RESOURCE USE FOR  
CLIMATE-SMART AGRICULTURE 
Farmers can utilize the latest AI advances in remote sensing and agricultural simulations to 

optimize their use of inputs, such as irrigation, fertilizers and pesticides. For example, an AI-

based decision support system for precision irrigation in a lettuce crop used a combination of 

soil moisture sensors, weather data and ML algorithms to optimize irrigation scheduling.35 The 

results showed a 20% reduction in water use compared to traditional irrigation methods while 

maintaining crop yield and quality.  

Reinforcement learning (RL) methods have recently been used to inform agricultural decision-

making based on complex and high-dimensional data, such as historic weather, soil 

information, forecast and remote sensing data. Coupled with crop simulation models, RL 

interfaces can combine to create virtual farms by simulating different crops, weather 

conditions and soil properties.36-39 By simulating a variety of management scenarios, 

researchers and farmers can set customized parameters and optimization algorithms. These 

simulations explore various crop growth and environmental outcomes, aiming to balance 

economic viability, GHG emission mitigation and other elements of environmental 

sustainability in food production.  

AI applications in precision agriculture benefit from the availability of low-cost, reliable sensors 

and internet-connected farm equipment, the increased availability of agricultural drones and 

the growing adoption of digital platforms for farm management.40 However, barriers exist, 

such as high upfront costs of the new technologies, limited data availability in some regions, 

and the need for technical expertise among farmers. Risks include the possibility of short-term 

over-optimization leading to reduced farming system diversity, data privacy and security 

concerns, potential unintended environmental consequences, job displacement, and the loss 

of traditional agricultural knowledge. Additionally, the highly contextual nature of precision 

agriculture systems means that successful AI approaches in one field may not be easily 

transferable to others.  

Simulation models are flexible enough to incorporate multi-modal data (e.g., from remote sensing, 

biophysical crop models, newspaper articles and crowd-sourced images) for more accurate and 

timely predictions, potentially incorporating relationships not captured by current process-based 

models alone. Foundation models trained on large agricultural datasets can be fine-tuned to perform 

well on a diverse range of downstream tasks where data are more limited. However, ML methods 

often perform poorly in conditions different from the training data— for example, data-driven 

prediction models that exploit spatiotemporal correlations often fail to perform well in future years 



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 4: Food Systems - 4-9 

  

 

or new locations.41,42 No matter how good a simulation is, it will always be some distance from 

reality, especially in extremely complex systems. Additionally, an uneven distribution of sufficient, 

high-quality data for model validation and training across locations and farming systems, could 

potentially results in inequitable distribution of model performance across geographical regions and 

socioeconomic strata. Further, there is a risk that AI methods rely on spurious correlations, leading to 

inaccurate estimations of intervention effects or physically implausible simulated behavior.43 

 

AI Guardrail 

INCLUSIVE MODEL AND TOOL 
DEVELOPMENT 
To ensure that AI tools are relevant and applicable across diverse contexts, it is crucial to 

prioritize inclusive and iterative AI development. This involves engaging local stakeholders—

such as farmers, extension agents and community organizations—in designing, training and 

validating AI models. By incorporating local knowledge, preferences and priorities into the 

development process, AI tools can be better tailored to the specific needs and constraints of 

different agroecological regions, production systems and sociocultural contexts. Inclusive AI 

development also requires using diverse and representative training datasets that capture the 

variability of food systems across different locations and scales. Initiatives to support collecting 

and sharing localized data from food systems, such as participatory sensing networks or 

community-driven data platforms, can help develop more context-specific AI solutions. 

 

iv. Crop breeding 

Developing crops with increasingly higher yields and enhanced stress tolerance is crucial for feeding 

a growing population in the face of climate change.44 AI can help accelerate the crop breeding 

process.45-49 On the macro-scale, developments in robotics and computer vision have revolutionized 

the collection and synthesis of data on plant size, shape, color and other visible characteristics, 

allowing researchers and farmers to assess crop performance much faster than traditional 

methods.50 On the micro-scale, AI can help analyze genetic sequencing information. The genomes of 

many crops have yet to be fully annotated, which means that their genomes have not been fully 

assembled and functions have not been identified for all genes.51,52 When presented with a genetic 

sequence, AI can help predict gene function, speeding up the annotation process and unlocking 

potential crop improvement targets for diverse species.53 
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Combining macro-level phenotypic data with genetic sequencing information generates rich and 

extensive datasets that link the expression of specific genetic regions to traits displayed in the field 

across various environmental conditions.54,55 Modern AI algorithms are capable of discovering 

strongly non-linear patterns in high-dimensional data. Thus, they can be trained on these datasets to 

predict complex traits of new cultivars in various environments based solely on genomic 

information.56 These predictions are fed into optimization algorithms for autonomous decision-

making (e.g., reinforcement learning algorithms) to optimize critical factors of breeding programs by 

making data-driven choices.57,58 This prediction can cut down on the time and uncertainty involved 

with traditional plant breeding.54  

 

AI Guardrail 

ADAPTIVE DATA COLLECTION SYSTEMS 
Developing adaptive data collection systems is essential for ensuring that AI tools in food 

systems are continuously updated with relevant, accurate and timely data from on-the-ground 

sources. This is particularly important in the context of climate change, where rapid shifts in 

weather patterns, crop yields and market conditions require agile and responsive data 

collection processes. These systems should be designed to collect data from across the supply 

chain on local conditions, practices and challenges. For example, farmers can share data on 

pest and disease outbreaks through mobile apps or online platforms, which can be used to 

refine AI models for precision agriculture and pest and disease modeling. Data collection 

systems should also leverage crowdsourcing and citizen science approaches to gather large-

scale, fine-grained data on food system dynamics, such as food prices, consumption patterns 

and waste levels, which can be used to improve AI models for supply chain optimization and 

food security monitoring. Large-language-model interfaces can gather timely insights into 

emerging practices and challenges under evolving climate conditions. 
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In addition to assisting traditional breeding processes, AI can also be instrumental in supporting 

modern biotechnological breeding methods like gene editing.59 Gene editing techniques make 

precise changes in a crop’s genetic code that lead to a desired characteristic. Well-identified genomic 

information produced with the help of AI, as described above, is key for selecting regions for editing 

that will have a functional effect on the crop. Within that region, AI tools can help choose which 

specific sequence to target for high editing efficacy, as well as ensuring that any potential off-target 

effects are minimized.60,61 AI can also help improve gene editing methods overall by designing new 

proteins for increased editing ability, continuing to evolve the field to be ever more efficient and 

precise.62 

AI applications in crop breeding can significantly reduce costs and time for labor-intensive 

phenotyping. They can also enhance breeding efficiency through early identification of promising 

climate-resilient cultivars and precise design of genetic engineering techniques. However, barriers 

exist, such as limited access to high-quality genomic datasets for under-researched crops, the need 

for substantial computational resources, and limited transferability across different crop species or 

environments given that the complexity of plant-environment interactions cannot be fully captured 

by genetic data alone. Risks include an over-reliance on ML predictions without sufficient field 

validation, the possibility of further narrowing genetic diversity, and the potential misuse of ML-

generated intellectual property. These risks need to be addressed in order to manage further 

consolidation of genetic control in the seed industry and to ensure that generated crop varieties 

effectively support local communities and agroecosystems.  

C. Barriers  

i. Lack of interpretability  

Many advanced AI models operate as "black boxes" to inexperienced users, making it difficult for end 

users to understand how the model arrives at its predictions or recommendations. This lack of 

interpretability can hinder the adoption of AI tools—for instance, a farmer might be reluctant to 

follow an AI-recommended planting schedule or fertilizer application rate without understanding the 

underlying reasoning. Care must be taken to generate accurate explanations of AI recommendations 

wherever possible, as users may be more inclined to trust a model's predictions about crop 

management or food distribution when given some kind of explanation, even if the prediction, or 

explanation, is incorrect.
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AI Guardrail 

GUIDANCE ON APPROPRIATE USE 
Providing clear and comprehensive guidance on the appropriate use of AI tools is essential for 

ensuring their responsible and effective application in food systems. This is particularly 

important given the potential for AI tools to influence critical decisions related to agricultural 

production, supply chain management and policy development, which can have significant 

implications for food security, livelihoods and environmental sustainability. Guidance should 

cover key considerations, such as data privacy and security, as well as potential biases and 

limitations of AI tools. It should also provide practical advice on how to select, implement and 

evaluate AI tools based on specific use cases, user needs and contextual factors. This can 

involve developing best practice guides, case studies and decision support frameworks that 

help users navigate the complex landscape of AI tools and make informed choices about their 

application. Moreover, guidance should emphasize the importance of using AI tools in 

conjunction with other forms of knowledge and expertise, such as local and indigenous 

knowledge systems, to advance a truly context-sensitive decision-making approach. 

 

ii. Limited transferability of agricultural data 

Agricultural AI models are highly dependent on the specific spatiotemporal context in which they are 

trained. Correlative factors established in one location or time-period may not be reliably transferred 

to another due to differences in climate, soil, socioeconomic conditions or management practices. 

Even high-resourced and high-producing regions may experience challenges with model 

transferability due to contextual differences that are not immediately noticeable in the underlying 

datasets. Efforts to enhance transferability— such as the collection and publication of data from 

multi-environment trials, with wide spatial, temporal and production system coverage— are crucial 

for developing AI tools that can support decision-making across diverse contexts. 

iii. Lack of available and accessible agricultural data 

The development of AI applications in food systems often relies on collecting and sharing sensitive 

data, such as individual farm-level information on production practices, yields and financial 

performance. Ensuring the privacy and security of these data is crucial for protecting the interests of 

producers and maintaining trust in AI systems. Furthermore, some datasets may be proprietary, 

expensive, restricted or even classified, and some models may not have open-source code. Clear 

frameworks for data ownership and access rights are necessary to ensure equitable distribution of 

the benefits of AI applications and that producers maintain control over their data. 
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AI Accelerator 

SCALABLE DATA-MODEL DEVELOPMENT 
Integrated and scalable data-model systems are particularly critical for AI applications in food 

systems, given the complexity and diversity of data sources involved. Model developers would 

benefit tremendously from seamlessly integrated data from various stages of the food supply 

chain, including input distribution (e.g., fertilizers, seeds), agricultural production, food 

processing, distribution, consumption and waste management. For example, data from farm-

management systems, precision-agriculture sensors, food-processing equipment and retail 

point-of-sale systems could be harmonized to enable end-to-end visibility. This integration 

could also allow optimization of food systems to effectively reduce food loss and waste. 

Additionally, managers of data systems must build platforms that are deployable at scale to 

handle the massive volumes of data generated by food systems, all while ensuring data quality, 

security and privacy.  

D. Risks  

i. Counterproductive results for some objectives 

AI applications in food systems are often designed to help achieve specific, quantifiable targets, such 

as near-term crop yields. However, this singular focus can lead to damaging results unless a broader 

range of objectives is considered. For instance, an AI decision support system designed to maximize 

immediate crop output might recommend management practices that deplete soil nutrients, reduce 

biodiversity or increase vulnerability to pests and diseases over time. Similarly, AI-driven supply chain 

optimizations focusing solely on improving energy efficiency might inadvertently reduce system 

redundancy, leaving food distribution networks more vulnerable to disruptions from climate shocks 

or other unforeseen events. The challenge lies in developing AI models that optimize across multiple 

and sometimes competing objectives, such as productivity, environmental sustainability, economic 

viability, social equity and long-term resilience to climate change. 

ii. Bias in agricultural data collection 

The quality, availability and representativeness of the data used to train AI models can significantly 

impact their performance and applicability. In research and development (R&D) for food systems, 

data collection bias can arise from self-selection issues, in which only well-resourced producers with 

established best practices choose to participate in data collection efforts or publicize results. This can 

lead to models that are skewed toward better-performing systems and may not accurately represent 

the challenges and opportunities faced by a wider range of producers. Additionally, using data from 

already suitable agricultural areas to predict agricultural production in less suitable environments can 

result in overly optimistic projections and inadequate adaptation planning. 
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iii. Reinforcement of existing societal inequalities 

Adopting AI technologies in food systems may exacerbate existing societal inequalities due to 

unequal access to education, digital infrastructure, data generation, data holdings and financial 

resources. Smallholder farmers and marginalized rural communities may face significant barriers in 

accessing and benefiting from AI tools, such as limited internet connectivity, low digital literacy, lack 

of affordable computing devices and lack of access to AI-enhanced inputs (such as improved seeds). 

Furthermore, many agricultural regions do not have the resources to collect, clean and digitize data. 

This digital divide can widen the gap between well-resourced and under-resourced communities, 

concentrating AI benefits among a small group of already advantaged stakeholders. Efforts to 

promote inclusive AI adoption, such as investments in rural digital infrastructure, digital literacy 

training programs and development of low-cost, user-friendly AI tools, are crucial for ensuring that 

the benefits of AI in food systems are distributed equitably. 

 

AI Accelerator 

COLLABORATIVE DATA ECOSYSTEMS 
Establishing collaborative data ecosystems that bring together diverse stakeholders, including 

farmers, researchers, agribusinesses, supply chain managers and policymakers, can help to 

address issues of data bias, privacy and ownership in developing AI tools for food systems. 

These ecosystems should prioritize creation of shared, interoperable and secure data 

platforms that enable the pooling of diverse food system datasets while protecting the rights 

and interests of agricultural data providers. Collaborative data governance frameworks, such 

as data cooperatives or trust frameworks, can help to ensure that data is collected, shared and 

used in an equitable and transparent manner.  

 

  



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 4: Food Systems - 4-15 

  

 

E. Recommendations  

Food systems are highly decentralized, with an estimated 570 million farms worldwide, each 

operating in specific agroecological and socioeconomic contexts, challenging the notion of one-size-

fits-all AI solutions. To address the myriad unique issues associated with AI applications in food 

systems and to ensure their responsible and effective deployment across contexts, we recommend 

the following priorities targeted at a range of institutional structures (Table 4-3): 

1. National governments should expand public R&D funding to develop and study AI applications in 

remote sensing, agricultural systems modeling, crop breeding and other high impact application 

areas. 

2. Researchers, industry associations and standards development organizations should collaborate 

to develop and share benchmark datasets, sample algorithms and standard performance metrics 

for AI applications. 

3. National governments and businesses should invest in developing adaptive data collection 

technology, such as Internet of Things sensors and mobile apps, to enable continuous updating of 

AI models with relevant, accurate and timely data. 

4. Academic institutions and research organizations should prioritize inclusive and participatory 

approaches to developing AI models and tools, such as engaging farmers, extension agents and 

community organizations, to ensure that AI solutions are context-specific, user-centered and 

aligned with local needs and priorities. 

5. Professional societies, academic institutions and international organizations should develop and 

promote guidelines, best practices and training programs on the appropriate use of AI in food 

systems, covering issues such as data privacy, model transparency, potential biases, risks and 

limitations. 

6. National governments, private companies and civil society organizations should establish 

collaborative data ecosystems for food systems that have clear frameworks for data sharing, 

ownership and access rights. 

7. Research funding agencies and philanthropy should support interdisciplinary research on ethical, 

legal and social implications of AI in food systems, as well as development of responsible AI 

governance frameworks and accountability mechanisms. 

8. Private companies and model developers should prioritize development of human-in-the-loop 

model improvement approaches, incorporating user feedback and local knowledge to iteratively 

refine AI solutions and ensure their adaptability to evolving climate challenges and food system 

dynamics. 
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9. International organizations and multi-stakeholder platforms should facilitate knowledge 

exchange, capacity building and coordination of AI R&D with a focus on promoting inclusive 

innovation and equitable access to AI technologies. 

 

A responsible AI information ecosystem is based on the principles of true multi-stakeholder 

collaboration, the incorporation of local knowledge and priorities, the prioritization of transparency 

and accountability, and an emphasis on continuous, adaptive improvement. A coordinated approach 

can support the critical transition to more sustainable, resilient and equitable food systems that are 

bolstered against the impending challenges of climate change. 

Table 4-3. Recommendations  

GOVERNMENTS CIVIL SOCIETY 
INTERNATIONAL 
ORGANIZATIONS 

BUSINESS SCIENCE 

Convene consortia 
exchanging food 
system data 

Ensure equitable 
access to AI tools in 
food systems 

Establish oversight 
and accountability 
mechanisms 

Create forums for 
stakeholder 
feedback on AI 
policies  

Support 
participatory 
collection initiatives 
for agricultural data 

Invest in rural 
connectivity 
infrastructure 

Monitor data use 
and privacy issues 

Advocate for 
inclusive and 
transparent data 
governance 

Provide training in 
digital literacy to 
marginalized groups 

Create resources on 
ethics in AI for food 
systems  

Monitor AI adoption 
and impacts 

 

Coordinate global 
data-sharing efforts in 
food systems 

Develop privacy and 
security frameworks 
for data in food 
systems  

Promote inclusive AI 
development 

Facilitate technology 
transfer and capacity 
building 

Identify and fill data 
gaps 

Share pre-competitive 
research and data 

 

Participate in industry 
data consortia and 
standards bodies 

Ensure diversity in AI 
teams and training 
data 

Invest in Internet of 
Things and mobile 
data collection  

Develop scalable, 
accessible data 
architecture  

Co-develop tools that 
help identify barriers 
and limits to 
adaptation 

Develop open-source 
libraries, platforms, 
models and tools 

Study the ethical, 
legal and social 
elements of AI in 
food systems 

Advance 
explainable, 
interpretable AI 
techniques 

Establish model 
evaluation 
protocols using 
open benchmark 
datasets 

Standardize data 
formats for ease 
of interoperability 

Identify and fill 
data gaps 
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